Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane.
نویسندگان
چکیده
Drought is one of the most challenging agricultural issues limiting sustainable sugarcane production and, in some cases, yield losses caused by drought are nearly 50%. DREB proteins play vital regulatory roles in abiotic stress responses in plants. The transcription factor DREB2A interacts with a cis-acting DRE sequence to activate the expression of downstream genes that are involved in drought-, salt- and heat-stress response in Arabidopsis thaliana. In the present study, we evaluated the effects of stress-inducible over-expression of AtDREB2A CA on gene expression, leaf water potential (ΨL), relative water content (RWC), sucrose content and gas exchanges of sugarcane plants submitted to a four-days water deficit treatment in a rhizotron-grown root system. The plants were also phenotyped by scanning the roots and measuring morphological parameters of the shoot. The stress-inducible expression of AtDREB2A CA in transgenic sugarcane led to the up-regulation of genes involved in plant response to drought stress. The transgenic plants maintained higher RWC and ΨL over 4 days after withholding water and had higher photosynthetic rates until the 3rd day of water-deficit. Induced expression of AtDREB2A CA in sugarcane increased sucrose levels and improved bud sprouting of the transgenic plants. Our results indicate that induced expression of AtDREB2A CA in sugarcane enhanced its drought tolerance without biomass penalty.
منابع مشابه
Simultaneous Expression of Abiotic Stress Responsive Transcription Factors, AtDREB2A, AtHB7 and AtABF3 Improves Salinity and Drought Tolerance in Peanut (Arachis hypogaea L.)
Drought, salinity and extreme temperatures are the most common abiotic stresses, adversely affecting plant growth and productivity. Exposure of plants to stress activates stress signalling pathways that induce biochemical and physiological changes essential for stress acclimation. Stress tolerance is governed by multiple traits, and importance of a few traits in imparting tolerance has been dem...
متن کاملIntroduction of the rd29A:AtDREB2A CA gene into soybean (Glycine max L. Merril) and its molecular characterization in leaves and roots during dehydration
The loss of soybean yield to Brazilian producers because of a water deficit in the 2011-2012 season was 12.9%. To reduce such losses, molecular biology techniques, including plant transformation, can be used to insert genes of interest into conventional soybean cultivars to produce lines that are more tolerant to drought. The abscisic acid (ABA)-independent Dehydration Responsive Element Bindin...
متن کاملA Novel Stress-Induced Sugarcane Gene Confers Tolerance to Drought, Salt and Oxidative Stress in Transgenic Tobacco Plants
BACKGROUND Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. METHODOLOGY/PRINCIPAL FINDINGS In a previous study, we evaluated the transcriptome of drought-stressed...
متن کاملmicroRNAs Associated with Drought Response in the Bioenergy Crop Sugarcane (Saccharum spp.)
Sugarcane (Saccharum spp.) is one of the most important crops in the world. Drought stress is a major abiotic stress factor that significantly reduces sugarcane yields. However the gene network that mediates plant responses to water stress remains largely unknown in several crop species. Although several microRNAs that mediate post-transcriptional regulation during water stress have been descri...
متن کاملOver-Expression of SlSHN1 Gene Improves Drought Tolerance by Increasing Cuticular Wax Accumulation in Tomato
Increasing cuticular wax accumulation in plants has been associated with improving drought tolerance in plants. In this study, a cDNA clone encoding the SlSHN1 transcription factor, the closest ortholog to WIN/SHN1 gene in Arabidopsis, was isolated from tomato plant. Expression analysis of SlSHN1 indicated that it is induced in response to drought conditions. The over-expression of SlSHN1 in to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant science : an international journal of experimental plant biology
دوره 221-222 شماره
صفحات -
تاریخ انتشار 2014